Submicron Nanosecond Thermoreflectance Imaging for Thermal and Failure Analysis

SEMI World Hdqtrs, 673 S Milpitas Blvd, Milpitas, California, United States, 95035, Virtual: https://events.vtools.ieee.org/m/336546

Performance requirements for today’s semiconductor and optoelectronic devices are leading to shrinking geometries, more complex 3-dimensional structures, and new materials. High temperatures, hot spots and temperature spikes can have a major impact on reliability. It is essential that one have a thorough understanding of static and dynamic thermal performance under operating and static conditions. This has traditionally been complex, time consuming, and often lacked the resolution required to detect thermal anomalies that could lead to early device failures. Fortunately, advances in thermal imaging techniques that combine the benefits of thermoreflectance-based analysis with illumination wavelengths from near-ultraviolet to near infrared coupled with infrared thermography can support thermal, spatial, and transient resolution consistent with today’s advanced complex device structures and shrinking geometries. In addition, equipment has advanced to considerably reduce the time and cost to get accurate results. Many examples will be shared to fully illustrate the device thermal behaviors that can be detected with these advanced thermal analysis techniques. Speaker(s): Mo Shakouri, SEMI World Hdqtrs, 673 S Milpitas Blvd, Milpitas, California, United States, 95035, Virtual: https://events.vtools.ieee.org/m/336546

Wide Bandgap Semiconductors: Opportunities and Challenges for Improved Modeling and Characterization Methods in Power Electronic Applications

Room: 4th Floor, Room 4021, Bldg: Sobrato Campus for Discovery and Innovation (SCDI), 500 El Camino Real, Santa Clara University’s Frugal Innovation Hub, Santa Clara, California, United States, 95053

Wide bandgap semiconductor devices based on GaN and SiC offer myriads of advantages over traditional Si-based devices for applications in power electronics. These advantages include, among others, faster switching capabilities, allowing for reduced filtering components within converter topologies, thus leading to improved power density. Despite their many advantages, several challenges related to technological readiness level have hindered the widespread adoption of these devices. At the device-physics level, for example, the theoretical high voltage capability of GaN has yet to be commercially realized. At the device-circuits level, the fast-switching capability of SiC, though generally a beneficial attribute, has led to undesirable injected harmonic content into power electronic converters, leading to detrimental circuit-behavior. For these reasons, advanced modeling, and characterization methods for both GaN and SiC are needed, so that these devices can realize their full performance entitlement. This talk will present a broad array of modeling and characterization methodologies for GaN and SiC semiconductors. Device physics simulations using finite element modeling techniques will be presented, demonstrating the high voltage capability of vertical GaN diodes. It will be shown how these types of models can lead to the design and fabrication of future high voltage and reliable vertical GaN devices. Analytical physics-based models of GaN diodes, based on first principles, will also be presented. For these types of models, tradeoffs between model-fidelity and convergence-time in circuit-simulations will be discussed. Behavioral models of SiC MOSFETs, based on mathematical curve-fitted equations, will then be presented. These models will demonstrate the need to capture the frequency-dependence of the device’s parasitic per-terminal junction capacitances, as well as that of the parasitic package inductances, in order to construct a comprehensive empirically validated high-fidelity circuit-simulation. New strategies that can enable the development of hybrid-physics and -behavioral models will be presented, in a manner that offers utility to both device fabrication engineers, as well as application-circuit designers. For the various types of models presented, the importance of the interplay and refinement between simulation and empirical validation will be emphasized. This talk will conclude with characterization techniques and opportunities for wide bandgap semiconductors in space. The work presented in this talk lends itself well to developing strategies for multilevel integrated modeling infrastructures of next generation GaN and SiC devices, and to aid in the design, fabrication, and implementation of future high-voltage and reliable wide and ultrawide bandgap semiconductors. Speaker(s): Prof. Raghav Khanna, Room: 4th Floor, Room 4021, Bldg: Sobrato Campus for Discovery and Innovation (SCDI), 500 El Camino Real, Santa Clara University’s Frugal Innovation Hub, Santa Clara, California, United States, 95053